skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cantine, Marjorie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Low‐lying islands in tropical regions are vulnerable to near‐term sea‐level rise and hurricane‐induced flooding, with substantial human impact. These risks motivate researchers to elucidate the processes and timescales involved in the formation, growth and stabilization of coastlines through the study of Holocene shoreline dynamics. Little Ambergris Cay (Turks and Caicos Islands) is a low‐lying carbonate island that provides a case study in the nucleation and growth of such islands. This study investigates the sedimentology and radiocarbon chronology of the island's lithified sediments to develop a model for its history. The island's lithified rim encloses a tidal swamp populated by microbial mats and mangroves. Preliminary radiocarbon data supported a long‐standing inference that the island is Holocene in age. This study integrates petrographic, sedimentological and new radiocarbon data to quantify the age of the island and develop a model for its evolution. Results indicate that the ages of most lithified sediments on the island are <1000 cal yrbp, and the generation and lithification of carbonate sediment in this system supports coastline growth of at least 5 cm/year. The lithification of anthropogenic detritus was documented, consistent with other evidence that in recent centuries the lithified rim has grown by rates up to tens of centimetres per year. A unit of mid‐Holocene age was identified and correlated with a similar unit of early transgressive aeolianite described from San Salvador, The Bahamas. It is proposed that this antecedent feature played an important role in the nucleation and formation of the modern island. Results extend an established Bahamian stratigraphic framework to the south‐western extreme of the Lucayan archipelago, and highlight the dynamism of carbonate shorelines, which should inform forward‐looking mitigation strategies to increase coastal resiliency to sea‐level rise. These results inform interpretation of the palaeoenvironmental record of carbonate environments, underscoring their geologically rapid pace of lithification. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. ABSTRACT Quantitative analysis of quartz microtextures by means of scanning electron microscopy (SEM) can reveal the transport histories of modern and ancient sediments. However, because workers identify and count microtextures differently, it is difficult to directly compare quantitative microtextural data analyzed by different workers. As a result, the defining microtextures of certain transport modes and their probabilities of occurrence are not well constrained. We used principal-component analysis (PCA) to directly compare modern and ancient aeolian, fluvial, and glacial samples from the literature with nine new samples from active aeolian and glacial environments. Our results demonstrate that PCA can group microtextural samples by transport mode and differentiate between aeolian transport and fluvial and glacial transport across studies. The PCA ordination indicates that aeolian samples are distinct from fluvial and glacial samples, which are in turn difficult to disambiguate from each other. Ancient and modern sediments are also shown to have quantitatively similar microtextural relationships. Therefore, PCA may be a useful tool to constrain the ambiguous transport histories of some ancient sediment grains. As a case study, we analyzed two samples with ambiguous transport histories from the Cryogenian Bråvika Member (Svalbard). Integrating PCA with field observations, we find evidence that the Bråvika Member facies investigated here includes aeolian deposition and may be analogous to syn-glacial Marinoan aeolian units including the Bakoye Formation in Mali and the Whyalla Sandstone in South Australia. 
    more » « less
  3. An integrated model illuminates the fate of marine carbonate biomineralizers in past, present, and future mass extinctions. 
    more » « less
  4. The rise of animals occurred during an interval of Earth history that witnessed dynamic marine redox conditions, potentially rapid plate motions, and uniquely large perturbations to global biogeochemical cycles. The largest of these perturbations, the Shuram carbon isotope excursion, has been invoked as a driving mechanism for Ediacaran environmental change, possibly linked with evolutionary innovation or extinction. However, there are a number of controversies surrounding the Shuram, including its timing, duration, and role in the concomitant biological and biogeochemical upheavals. Here we present radioisotopic dates bracketing the Shuram on two separate paleocontinents; our results are consistent with a global and synchronous event between 574.0 ± 4.7 and 567.3 ± 3.0 Ma. These dates support the interpretation that the Shuram is a primary and synchronous event postdating the Gaskiers glaciation. In addition, our Re-Os ages suggest that the appearance of Ediacaran macrofossils in northwestern Canada is identical, within uncertainty, to similar macrofossils from the Conception Group of Newfoundland, highlighting the coeval appearance of macroscopic metazoans across two paleocontinents. Our temporal framework for the terminal Proterozoic is a critical step for testing hypotheses related to extreme carbon isotope excursions and their role in the evolution of complex life. 
    more » « less